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Data are fundamental sources of insight for experimental and compu-
tational sciences. The Department of Energy acknowledges the challenges
posed by fast-growing scientific data sets and more complex data. The graph
abstraction provides a natural way to represent relationships among complex
fast- growing scientific data sets. On future exascale systems, power con-
sumption is of primary concern yet existing graph algorithms consume too
much energy per useful operation due to their high communication costs,
lack of locality, and inability to exploit hierarchy. This project explores
methods to increase the energy efficiency of parallel graph algorithms and
data mining tasks. A new family of algorithms will be developed to drasti-
cally reduce the energy footprint and running time of the graph and sparse
matrix computations that form the basis of various data mining techniques.
This project will also exploit the well-known duality between graph and
sparse matrices to develop communication- avoiding graph algorithms that
consume significantly less power. This project is relevant to DOE mission-
critical science including bioinformatics and genomics with particular em-
phasis on plant genomics that can result in better biofuels through efficient
genetic mapping, climate science where recent graph- based methods show
increased accuracy in hurricane predictions, and combustion science where
graph search techniques are used to analyze extreme-scale simulation data.

1 Summary

The early-career research project has made significant progress in its first
year. Among the three significant research thrusts that were originally pro-
posed, we made advances in two of them already. They are:
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• Higher-level graph kernels that avoid communication.

• Exploitation of filter-induced subgraphs.

The progress for graph kernels that avoid communication is detailed
in Section 3.1, while the progress for filtered graph processing is detailed
in Section 3.2. In addition, we are developing new graph-theoretical par-
allel algorithms for the solution of scientific problems. Our collaboration
with MANTISSA (ASCR - Applied Math) and DEGAS (ASCR - Computer
Science) projects created a novel fine grained parallel algorithm for the con-
struction and travel of de Bruijn graphs for de novo genome assembly, which
is explained in detail in Section 3.3. DOE relevance of each research accom-
plishment is mentioned within the corresponding section.

Our next year plans to further advance both of these research thrusts, as
well as our plans to move towards energy measurements to quantify benefits,
are explained in Section 4. Overall, our project so far resulted in six peer-
reviewed publications [19, 3, 2, 12, 14, 1] and one position paper [15]. The
report concludes with lists of software artifacts, presentations, community
service, and references.

2 Personnel

In terms of personnel, we successfully filled our postdoctoral fellow posi-
tion(s). Ariful Azad from Purdue University joined in February and is
working 100% on this project. Harsha Simhadri from CMU joined at the
beginning of the fiscal year and working about 40% on this project while
spending the rest of his time in another DOE Office of Science (ASCR -
Computer Science) funded project, DEGAS. In contrast to the original pro-
posal plan, we opted for hiring 1.5 postdocs at the expense of lowering PI’s
percentage to 50-55%. This allows for having both an algorithms and a
partial systems researcher in our team, which is instrumental for successful
execution of our research plan. We also temporarily hired an undergraduate
summer intern, Eric Lee from UC Berkeley, to help with the implementation
of sparse all-to-all 1 operations that are performance critical to the imple-
mentation of communication-avoiding sparse matrix-matrix multiplication
algorithms.

1in the sense of data sparsity, not in the sense of sparse collective neighborhoods
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3 Progress and Accomplishments

3.1 Reduced-communication graph algorithms

We designed new parallel algorithms that reduce the communication costs of
graph computations. Most graph algorithms have very low computational
intensity, hence the execution time is bounded by the communication re-
quirements of the algorithm. In addition to improving the running time
drastically, reducing communication will also help improve the energy con-
sumption of graph algorithms in exascale. This is because the power required
to transmit data also depends on the length of the wire: the farther the data,
the higher the power usage.

All-pairs shortest paths (APSP) is a computationally intensive graph
algorithm. For dense graphs, we developed a distributed memory algorithm
that is communication optimal. This work-efficient algorithm is based on
the recursive version of Kleene’s algorithm (as opposed to the more popular
Floyd-Warshall algorithm), and uses the ideas from 2.5D algorithms that
replicate the input data c times to reduce communication by a factor of

√
c.

The algorithm enables much better strong scaling, and we were able to solve
a 65K vertex dense APSP problem in about two minutes [19].

APSP itself has important applications in data analysis that are be-
coming increasingly important to DOE. One of the most popular non-linear
dimensionality reduction (i.e., manifold learning) algorithms, IsoMap [20],
requires geodesic distances between all pairs of vertices. Another impor-
tant application is the metric nearness problem [7], which finds the smallest
metric approximation to a set of non-metric distances. The decrease-only
version of this problem, where only decreasing changes to the input distances
are allowed, turns out to be equivalent to the APSP problem.

Sparse matrix-matrix multiplication (SpGEMM) enables efficient par-
allelization of various graph algorithms. It is the workhorse of a scalable
distributed-memory implementation of betweenness centrality, an algorithm
that finds influential entities in networks. Existing parallel algorithms for
SpGEMM spend the majority of their time in inter-node communication on
large concurrencies. We investigated communication-optimal algorithms for
SpGEMM. Our new theoretical paper [2] proves new communication lower
bounds, presents two new communication-optimal algorithms, and provides
a unified communication analysis of existing and new algorithms.

Breadth-first search (BFS) is a fundamental building block of many
higher-level graph algorithms. We designed a new distributed memory algo-
rithm that incorporates bottom-up search [3]. The new direction-optimizing
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distributed-memory algorithm reduces communication volume by a factor of
8x in theory, for graphs with power-law degree distribution. Our large scale
weak-scaling experiments showed that this reduction in theory translates
into a reduction in the running time where the new algorithm beats the
state-of-the-art classical 2D algorithm by up to 7.9x. The new BFS algo-
rithm has higher latency, hence its strong scaling behavior is not as good
as its weak scaling. Even in this context, however, the direction-optimizing
algorithm is energy efficient because much fewer processors are needed to
process a given graph within a fixed time constraint. The performance re-
sults are shown in Figure 1.

With many other leading experts in the field, we co-authored a position
paper on the development of BLAS-like primitives for graph operations [15],
which will include the reduced-communication algorithms described in this
section. This effort has implications for exascale as well: graph algorithms
will need to be redesigned to address the joint issues of complexity, resilience,
and scalability. The translation of every individual graph algorithm to exas-
cale platforms will be prohibitively difficult due to the complexity of hard-
ware architectures and the diversity of graph operations. Primitives allow
algorithm designers to think on a higher level of abstraction, and reduce
duplication of implementation efforts. Our conjecture is that with the large
body of experience with sparse linear algebra in extreme scale computing,
the basic graph algorithm primitives we have proposed will be an effective
way to manage the exascale challenge. In particular, if we can manage the
exascale issues (scalability and reliability) inside the primitives, then graph
algorithm developers can explore algorithms for these machines using the
same approaches used on modest sized parallel systems. This would help
assure that the graph-based software needed for these machines exists as
exascale computers emerge.

3.2 Filtered and masked operations of graphs

Execution of complex analytic queries on massive semantic graphs is a chal-
lenging problem in big-data analytics that requires high-performance par-
allel computing. In a semantic graph, vertices and edges carry attributes
of various types and the analytic queries typically depend on the values of
these attributes. Thus, the computation must view the graph through a
filter that passes only those individual vertices and edges of interest. In
many applications it is prohibitively expensive to run a filter across an en-
tire graph data corpus, and produce (“materialize”) a new filtered graph as
a temporary object for analysis. In addition to the obvious storage prob-
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Figure 1: Top: Weak scaling of BFS traversal on the ORNL/Jaguar (Ti-
tan minus the GPUs), showing the 7.9X performance improvement at scale.
Bottom: For a fixed-sized real input (twitter), direction-optimizing algo-
rithm finishes at the same time using 1/16th of processors (and energy).

lems with materialization, the time spent during materialization is typically
not amortized by many graph queries because the user modifies the query
(or just the filter) during interactive data analysis. The alternative is to
filter edges and vertices “on the fly” during execution of the complex graph
algorithm.

Our manuscript in press [14] provides a solution to efficient on-the-fly
processing of filtered semantic graphs and shows how to efficiently handle
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nesting of filters without re-processing the whole graph. In other words, if
a second filter is applied to an already filtered graph, the algorithm only
processed the edges that passes the first filter. Furthermore, our approach
is generalized to handle arbitrary algorithms, and supports efficient filtering
on run-time definable edges/vertices which is more general than precompiled
edge types. We demonstrated the generality of our approach by specializing
two different graph algorithms: breadth-first search and maximal indepen-
dent set.

The same work also provides a new Roofline performance model for high-
performance graph traversals, suitable for evaluating the performance of
filtered semantic graph operations. The experimental results show excellent
performance scaling to graphs with tens of millions of vertices and hundreds
of millions of edges.

3.3 Graph analysis to address scientific challenges

Genome assembly: De novo whole genome assembly reconstructs genomic
sequence from short, overlapping, and potentially erroneous fragments called
reads. In a recent paper to be presented at the Supercomputing conference
this November [12], we studied optimized parallelization of the most time-
consuming phases of Meraculous, a state-of-the-art production assembler.
We developed a new parallel algorithm for k-mer (genome segments of length
k) analysis, characterized by intensive communication and I/O requirements,
and successfully reduce the memory requirements by 6.93×. We also focused
on the efficient parallelization of de Bruijn graph construction and traversal,
which necessitates a distributed hash table and is a key component of most
de novo assemblers. We provided a novel algorithm that leverages one-sided
communication capabilities to facilitate the requisite fine-grained parallelism
and avoidance of data hazards. We also analytically proved the scalability
of the algorithms. Overall our results show unprecedented performance and
efficient scaling on up to 15,360 cores of a Cray XC30, using real human
genome data as well as the recently-sequenced massive DNA of the hexaploid
wheat genome — with performance improvement from days for the original
serial code to seconds on our highly-optimized parallel version.

Our main performance result is summarized in Figure 2, showing un-
precedented scalability to several thousand cores at which point we can go
from raw sequencing data to contigs in less than three minutes for a human
genome. One of the contributions of this work is a new parallel algorithm for
k-mer analysis, which successfully reduced the memory requirements using
Bloom filters and probabilistic counting techniques, and attained remark-
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Figure 2: Performance and strong scaling of the new de Bruijn graph con-
struction & traversal and k-mer analysis steps on NERSC/Edison for the
human genome. The top three timing curves are with respect to the first y-
axis (left) whereas the parallel efficiency curve is with respect to the second
y-axis (right). The x-axis uses a log scale.

able scaling for this I/O- and communication-intensive computation. We
are planning to apply similar Bloom filter techniques to filtered and masked
graph operations thrust of this project.

Graph matching algorithms: Matching problems are fundamental in
graph theory where they come in many flavors. Maximum cardinality match-
ing in bipartite graphs as well as weighted perfect matching in general and
bipartite graphs has fundamental applications in the parallel solution of sys-
tems of sparse linear equations. Maximum cardinality matching in bipartite
graphs is used to permute a matrix to its block triangular form [16], which is
crucial for fast solution of sparse matrices arising in circuit simulation [10].

We are finishing work on a new algorithm and its shared-memory paral-
lelization for computing maximum cardinality matching in bipartite graphs.
Our algorithm finds augmenting paths via parallel breadth-first search (BFS)
from multiple source vertices, hence exposing more parallelism than single
source algorithms. Our novel tree-grafting method that eliminates most
of the redundant edge traversals resulting from increased parallelism. We
employ the recently proposed direction-optimized BFS algorithm as a sub-
routine to speed up augmenting path discoveries. Our algorithm generally
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compares favorably in terms of the average augmenting path length, the
number of iterations, and the number of edges traversed. We provide a
proof of correctness of our algorithm. Our NUMA-aware implementation
is scalable to 80 threads. For important classes of graphs, such as citation
networks, road networks, and web graphs, our algorithm runs 4-15 times
faster than the fastest competitor. We will be submitting our results within
the next few months.

Sparse matrix-multiple vector multiplication: In collaboration
with the FASTMath Institute, and the NUCLEI and the SUPER projects
of SciDAC, we utilized the Compressed Sparse Blocks (CSB) format im-
prove the performance of the sparse matrix-multiple vector multiplication
(SpMM) kernel, which provides more opportunities for performance opti-
mization than the single vector (SpMV) case. The integration of CSB-based
SpMM and its transposed variant into a large- scale distributed-memory
block eigensolver resulted in 40% runtime improvement and the results are
published in IPDPS this year [1]. In general, block eigensolvers provide an
attractive alternative to Lanczos-based eigensolvers as they are sufficiently
compute-intensive to relegate DRAM bandwidth to a secondary bottleneck.

While we showcased our SpMM results on MFDn, the implications of im-
proved SpMM performance are broader. For example, spectral clustering,
one of the most promising data clustering techniques, uses the eigenvectors
associated with the smallest eigenvalues of the Laplacian of the data simi-
larity matrix, to partition the graph into various clusters [21]. For a k-way
clustering problem, k eigenvectors are needed, where typically 10 ≤ k ≤ 100,
an ideal range for block eigensolvers. Block methods that rely on SpMM is
also used to solve large-scale sparse singular value problems [4], with most
popular methods being the subspace iteration and block Lanzcos. Singular
value decomposition can be used to perform dimensionality reduction tasks
such as latent semantic indexing [11].

4 Plans for the next fiscal year

Graph matching algorithms: For the parallel solution of unsymmetric
systems of linear equations (i.e. LU decomposition), static pivoting [13] is
often used to avoid dynamic pivoting that becomes prohibitively expensive in
distributed memory. In this scheme, the row permutations are chosen before
the factorization, in a preprocessing step. Static pivoting is accomplished
by finding the maximum weighted matching of the bipartite graph G =
(R,C,E) where R corresponds to the rows, C corresponds to the columns,
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and E corresponds to the nonzeros of the sparse matrix. In general, this
matching has to be “perfect”, or “maximum cardinality” (since an algorithm
that finds a maximum cardinality matching will find the perfect matching
if it exists) [17]. Another important advantage of static pivoting, even in
serial, is that it allows pre-application of a separate fill-reducing ordering on
the permuted matrix. The challenge for distributed-memory environments
is to find scalable parallel algorithms for maximum weight perfect matching
problem, which we will be working on during the next fiscal year.

Sparse matrix-matrix multiplication: We will build on our theoreti-
cal communication-avoiding SpGEMM work [2] and develop high-performance
implementations. We will leverage the sparse all-to-all primitive jointly im-
plemented by Eric Lee. In a separate thrust, new multicore algorithms will
also be developed in order to fully exploit the increasing intra-node par-
allelism. In addition to demonstrating performance in graph computations
such as betweenness centrality and Markov clustering, we plan to collaborate
with different groups in LBNL that need a high performance implementation
of SpGEMM and cater to their needs as well:

• PDSLin (Parallel Domain decomposition Schur complement based Lin-
ear Solver) library has SpGEMM as one of its performance bottle-
necks [23]. We will collaborate with Sherry Li.

• For linear-scaling electronic structure calculations, and specifically for
solving the self consistent field (SCF) equations that arise in Kohn-
Sham or Hartree-Fock theory, SpGEMM becomes a critical compo-
nent [5, 6]. NWChem currently does not support sparse methods but
has plans to do so in the future. We will collaborate with Bert de
Jong, Chao Yang, and Lin Lin.

• The setup phase of algebraic multigrid (AMG) methods perform the
so-called Galerkin product, RAP where R and P are sparse restric-
tion matrices and A is the sparse matrix representing the fine grid.
This operation becomes a bottleneck in high concurencies. We will
collaborate with Sam Williams and Mark Adams.

Filtered and masked operations for graphs: Many graph algo-
rithms can be significantly accelerated if the known structure of the output
is exploited. This is true for triangle counting, adaptive PageRank, and
even BFS based graph traversals. Formally, this masked operation can be
described as Multiply(Operand1, Operand2, Mask) where Mask is of the
same dimension as the output. We will be working on developing a theory
of masked sparse linear algebra operations that can avoid communication.
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Energy-efficiency measurements: We will start building infrastruc-
ture for performing fine-grained power consumption measurements of our
algorithms. We plan to wait until NERSC/Cori receives its test subset in
Spring 2015, which will be composed of Intel Haswell processors whose cores
are capable of independently scaling their frequency and voltages.

Software artifacts

Combinatorial BLAS: The PI, Aydın Buluç, has continued to lead the
development of the Combinatorial BLAS (CombBLAS) library [8, 9] along
both the functionality and the performance axes. Ariful Azad has familiar-
ized himself with the library and he is now developing distributed memory
graph matching algorithms using custom filters and semirings. We have inte-
grated our novel distributed memory direction optimizing BFS algorithm [3]
to the version 1.4 of CombBLAS, which makes the library the fastest avail-
able code for the Graph500 benchmark on Cray supercomputers.

Our work has been acknowledged and our performance claims has been
verified by independent researchers. In a recently published independent
study by Intel Research [18], CombBLAS was the fastest among all tested
graph processing frameworks on 3 out of 4 benchmarks. This work also
demonstrates that the linear algebra abstraction for graph algorithms, which
is a main focus of our project, enables high performance and comes close to
hand-optimized performance for important data mining algorithms such as
PageRank and Collaborative filtering.

A similar benchmarking effort [22] concludes that “the implementation
built on the CombBLAS library results in the best performance on multi-
CPU systems with a reasonable amount of effort. Advantages of this ap-
proach are that it provides a number of data structures necessary for many
graph computations and hides from the developer the complexity of the man-
agement of multithreading and distributing these data structures throughout
a system”. It also acknowledges that “the linear algebra implemented by the
CombBLAS library may represent the correct level of abstraction to sepa-
rate the concerns of implementing graph algorithms (on top of the library)
from the concerns of the hard- ware and implementing memory-efficient ab-
stractions and data structures (within the library)”.
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Presentations

1. College of Engineering Distinguished Seminar, Montana State Univer-
sity, 2013

2. Three goals in parallel graph computations: High performance, high
productivity, and reduced communication. Workshop on Parallel and
Distributed Algorithms for Inference and Optimization, Simons Insti-
tute, Berkeley, CA, 2013.

3. High-productivity and high- performance analysis of filtered semantic
graphs. SIAM Conference on Parallel Processing for Scientific Com-
puting, Portland, OR, 2014

4. Communication-avoiding linear-algebraic primitives for graph analyt-
ics. Graph Algorithms Building Blocks (GABB), IPDPS Workshops,
Phoenix, AZ, 2014.

5. Reducing communication in parallel graph computations. Workshop
on Algorithms for Modern Massive Data Sets (MMDS), Berkeley, CA,
2014.

6. The Graph BLAS effort and its implications for Exascale. SIAM
Workshop on Exascale Applied Mathematics Challenges and Oppor-
tunities (EX14), Chicago, IL, 2014.

Community Service (PI only)

• Associate Editor : ACM Transactions on Parallel Computing

• Minisymposia Co-organizer : “Graph Analysis for Scientific Discovery”
at SIAM Conf. on Parallel Processing for Scientific Computing, 2014.

• Program Committee: IEEE International Parallel & Dist. Processing
Symp. (IPDPS), 2014

• Program Committee: ACM/IEEE Conference on High Performance
Computing (SC), 2014

• Program Committee: WWW Workshop on Big Graph Mining, 2014

• Steering Committee: Graph Algorithms Building Blocks (GaBB), IPDPS
workshop.
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J. Feo, J. Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner, C. Leiserson,
A. Lumsdaine, D. Padua, S. Poole, S. Reinhardt, M. Stonebraker, and
S. Walla. Standards for graph algorithm primitives. In High Perfor-
mance Extreme Computing Conference (HPEC ’13). IEEE, Sept. 2013.

[16] A. Pothen and C.-J. Fan. Computing the block triangular form of a
sparse matrix. ACM Trans. Math. Softw., 16:303–324, December 1990.

[17] E. J. Riedy. Making static pivoting scalable and dependable. PhD thesis,
University of California, Berkeley, 2010.

[18] N. Satish, N. Sundaram, M. A. Patwary, J. Seo, J. Park, M. A. Hassaan,
S. Sengupta, Z. Yin, and P. Dubey. Navigating the maze of graph
analytics frameworks using massive graph datasets. In SIGMOD, 2014.
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